

Projected changes in land use in the lowland case study

Ausseil AG, Daigneault A, Timar L, Stephens S

PSConsulting Ltd

Input scenarios

SSP scenario

Shared Socio-economic Pathways (SSPs)

describe future global socioeconomic conditions including emissions of GHG

RCP scenario

Representative Concentration Pathways (RCPs) describe the global atmospheric radiative forcing associated with varying levels of GHG concentrations

SPA scenario

Shared climate Policy Assumptions (SPAs)

describe potential climate change mitigation and/or adaptation policies specific to New Zealand

Modelling approach

Output for commodity prices (SSP3)

Results – NZFARM (RCP8.5/SSP3)

HadGEM2 - RCP 8.5 SSP 3 NZFARM Estimates - Kaituna Catchment % change from 2015 baseline yields and prices

LURNZ Land Use in Rural New Zealand

Land-use change module

Land-use allocation module

Land-use intensity module

GHG emissions module

- Spatially explicit econometric model of land use in New Zealand
- Simulates annual changes in dairy, sheepbeef, plantation forestry and scrub in response to commodity price changes
- Spatially allocates land use change based on physical characteristics

LURNZ

Land-use allocation module

Land-use change module

Land-use allocation module

Land-use intensity module

GHG emissions module

Results LURNZ

Key differences NZFARM/LURNZ

	NZFARM	LURNZ
Land uses	Dairy, sheep/beef, crop, forestry, kiwifruit, others	Dairy, sheep/beef, scrub, forestry
Objective	Maximise farm profit (economic-driven only)	Calibrated on historical land-use changes (empirical, mix of socio-economic drivers)
Outputs	Area share Coarse spatial allocation Environmental outputs Economic outputs	Area share Spatial allocation
Climate change impacts	Yield-change for cropping, dairy, sheep/beef and forestry	Yield changes for dairy, sheep/beef
SSP scenario	High forestry prices, most profitable	Historical legacy

Framework to assess impacts and implications

Resources **Demographics** SSP scenario **Economic development RCP** scenario SPA scenario **Environmental factors** Welfare, institutions, technological development, Broader societal factors, policies

Mixing quantitative and narrative statements

narrative statements

Framework to assess impacts and implications

Sea level rise – land at risk

Results: RCP8.5/3/A

Resources:

Fuel cost increase, Loss of productive land due to sea level rise

Demographics

Aging population, rural population declining

Economic development

Decline in economic health

Food security a major driver, increasing likelihood of local markets

Increased cost of production

Environmental factors

Reversion to natural wetlands?
Increased risk of pest invasion, sedimentation, water diversion

Welfare, institutions, technological development,
Broader societal factors, policies
Increased risk of flooding due to limited investment in infrastructures
Decline in coastal property values
No new climate change mitigation option development
Disconnection from nature
Ad hoc coastal protection

Thanks for your Attention!

www.ccii.org.nz