

Projected changes in land use in the lowland case study

Ausseil AG, Daigneault A, Timar L, Stephens S

scion 🔅

Landcare Research

VICTORIA

PSConsulting Ltd

Input scenarios

Shared Socio-economic Pathways (SSPs)

describe future global socioeconomic conditions including emissions of GHG

Representative Concentration Pathways (RCPs) describe the global atmospheric radiative forcing associated with varying levels of GHG concentrations

SPA scenario

Shared climate Policy Assumptions (SPAs)

describe potential climate change mitigation and/or adaptation policies specific to New Zealand

Modelling approach

Output for commodity prices (SSP3)

Results – NZFARM (RCP8.5/SSP3)

LURNZ Land Use in Rural New Zealand

Motu

- Spatially explicit econometric model of land use in New Zealand
- Simulates annual changes in dairy, sheepbeef, plantation forestry and scrub in response to commodity price changes
- Spatially allocates land use change based on physical characteristics

LURNZ Land-use allocation module

Motu /

Results LURNZ

Motu

ECONOMIC AND PUBLIC POLICY RESEARCH

Key differences NZFARM/LURNZ

	NZFARM	LURNZ
Land uses	Dairy, sheep/beef, crop, forestry, kiwifruit, others	Dairy, sheep/beef, scrub, forestry
Objective	Maximise farm profit (economic-driven only)	Calibrated on historical land-use changes (empirical, mix of socio-economic drivers)
Outputs	Area share Coarse spatial allocation Environmental outputs Economic outputs	Area share Spatial allocation
Climate change impacts	Yield-change for cropping, dairy, sheep/beef and forestry	Yield changes for dairy, sheep/beef
SSP scenario	High forestry prices, most profitable	Historical legacy

Framework to assess impacts and implications

Framework to assess impacts and implications

Sea level rise – land at risk

Results: RCP8.5/3/A

Resources:

Fuel cost increase, Loss of productive land due to sea level rise

Demographics Aging population, rural population declining

Economic development Decline in economic health Food security a major driver, increasing likelihood of local markets Increased cost of production

Environmental factors Reversion to natural wetlands? Increased risk of pest invasion, sedimentation, water diversion Welfare, institutions, technological development,
Broader societal factors, policies
Increased risk of flooding due to limited investment in infrastructures
Decline in coastal property values
No new climate change mitigation option development
Disconnection from nature
Ad hoc coastal protection

Thanks for your Attention!

www.ccii.org.nz